
er-

Procee
1072-4
Managing Wire Delay in Large Chip-Multiprocessor Caches

Bradford M. Beckmann and David A. Wood
Computer Sciences Department

University of Wisconsin—Madison
{beckmann, david}@cs.wisc.edu

Abstract (CMPs), with two processors per chip, are already comm

ly
ue
re

n
a-
o
ing
r

into
.
r-
m
ut
m-
2
s.

-
tive
,
en-
o-
che
ar-
the
to
rs.
ed

t a

ly
he
ng
to
n.
ed
d
he

or
to

ock
o

In response to increasing (relative) wire delay, archi-
tects have proposed various technologies to manage the
impact of slow wires on large uniprocessor L2 caches.
Block migration (e.g., D-NUCA [27] and NuRapid [12])
reduces average hit latency by migrating frequently used
blocks towards the lower-latency banks. Transmission Line
Caches (TLC) [6] use on-chip transmission lines to provide
low latency to all banks. Traditional stride-based hardware
prefetching strives to tolerate, rather than reduce, latency.

Chip multiprocessors (CMPs) present additional chal-
lenges. First, CMPs often share the on-chip L2 cache,
requiring multiple ports to provide sufficient bandwidth.
Second, multiple threads mean multiple working sets, which
compete for limited on-chip storage. Third, sharing code
and data interferes with block migration, since one proces-
sor’s low-latency bank is another processor’s high-latency
bank.

In this paper, we develop L2 cache designs for CMPs
that incorporate these three latency management tech-
niques. We use detailed full-system simulation to analyze
the performance trade-offs for both commercial and scien-
tific workloads. First, we demonstrate that block migration
is less effective for CMPs because 40-60% of L2 cache hits
in commercial workloads are satisfied in the central banks,
which are equally far from all processors. Second, we
observe that although transmission lines provide low
latency, contention for their restricted bandwidth limits
their performance. Third, we show stride-based prefetching
between L1 and L2 caches alone improves performance by
at least as much as the other two techniques. Finally, we
present a hybrid design—combining all three techniques—
that improves performance by an additional 2% to 19%
over prefetching alone.

1 Introduction
Many factors—both technological and marketing—are

driving the semiconductor industry to implement multiple
processors per chip. Small-scale chip multiprocessors

cially available [24, 30, 44]. Larger-scale CMPs seem like
to follow as transistor densities increase [5, 18, 45, 28]. D
to the benefits of sharing, current and future CMPs a
likely to have a shared, unified L2 cache [25, 37].

Wire delay plays an increasingly significant role i
cache design. Design partitioning, along with the integr
tion of more metal layers, allows wire dimensions t
decrease slower than transistor dimensions, thus keep
wire delay controllable for short distances [20, 42]. Fo
instance as technology improves, designers split caches
multiple banks, controlling the wire delay within a bank
However, wire delay between banks is a growing perfo
mance bottleneck. For example, transmitting data 1 c
requires only 2-3 cycles in current (2004) technology, b
will necessitate over 12 cycles in 2010 technology assu
ing a cycle time of 12 fanout-of-three delays [16]. Thus, L
caches are likely to have hit latencies in the tens of cycle

Increasing wire delay makes it difficult to provide uni
form access latencies to all L2 cache banks. One alterna
is Non-Uniform Cache Architecture (NUCA) designs [27]
which allow nearer cache banks to have lower access lat
cies than further banks. However, supporting multiple pr
cessors (e.g., 8) places additional demands on NUCA ca
designs. First, simple geometry dictates that eight regul
shaped processors must be physically distributed across
2-dimensional die. A cache bank that is physically close
one processor cannot be physically close to all the othe
Second, an 8-way CMP requires eight times the sustain
cache bandwidth. These two factors strongly sugges
physically distributed, multi-port NUCA cache design.

This paper examines three techniques—previous
evaluated only for uniprocessors—for managing L2 cac
latency in an eight-processor CMP. First, we consider usi
hardware-directed stride-based prefetching [9, 13, 23]
tolerate the variable latency in a NUCA cache desig
While current systems perform hardware-directed strid
prefetching [19, 21, 43], its effectiveness is workloa
dependent [10, 22, 46, 49]. Second, we consider cac
block migration [12, 27], a recently proposed technique f
NUCA caches that moves frequently accessed blocks
cache banks closer to the requesting processor. While bl
migration works well for uniprocessors, adapting it t

This work was supported by the National Science Foundation
(CDA-9623632, EIA-9971256, EIA-0205286, and CCR-
0324878), a Wisconsin Romnes Fellowship (Wood), and dona-
tions from Intel Corp. and Sun Microsystems, Inc. Dr. Wood has a
significant financial interest in Sun Microsystems, Inc.
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

ach

es-

py

ed
c-

-
che
ion
n
rs
g

ral-
ti-
nd
a-
n-
to

e
ut

ro-
are
ts
o-
l-

nt

ble
[11,
ts,
ost
he
nt
ent
ses.
ed

mi-

4
e
nd
2
pa-
it

er
her
on
ve

Procee
1072-4
CMPs poses two problems. One, blocks shared by multiple
processors are pulled in multiple directions and tend to con-
gregate in banks that are equally far from all processors.
Two, due to the extra freedom of movement, the effective-
ness of block migration in a shared CMP cache is more
dependent on “smart searches” [27] than its uniprocessor
counterpart, yet smart searches are harder to implement in a
CMP environment. Finally, we consider using on-chip trans-
mission lines [8] to provide fast access to all cache banks [6].
On-chip transmission lines use thick global wires to reduce
communication latency by an order of magnitude versus
long conventional wires. Transmission Line Caches (TLCs)
provide fast, nearly uniform, access latencies. However, the
limited bandwidth of transmission lines—due to their large
dimensions—may lead to a performance bottleneck in
CMPs.

This paper evaluates these three techniques—against a
baseline NUCA design with L2 miss prefetching—using
detailed full-system simulation and both commercial and sci-
entific workloads. We make the following contributions:

• Block migration is less effective for CMPs than previous
results have shown for uniprocessors. Even with an per-
fect search mechanism, block migration alone only
improves performance by an average of 3%. This is in
part because shared blocks migrate to the middle
equally-distant cache banks, accounting for 40-60% of
L2 hits for the commercial workloads.

• Transmission line caches in CMPs exhibit performance
improvements comparable to previously published uni-
processor results [6]—8% on average. However, conten-
tion for their limited bandwidth accounts for 26% of L2
hit latency.

• Hardware-directed strided prefetching hides L2 hit
latency about as well as block migration and transmis-
sion lines reduce it. However, prefetching is largely
orthogonal, permitting hybrid techniques.

• A hybrid implementation—combining block migration,
transmission lines, and on-chip prefetching—provides
the best performance. The hybrid design improves per-
formance by an additional 2% to 19% over the baseline.

• Finally, prefetching and block migration improve net-
work efficiency for some scientific workloads, while
transmission lines potentially improve efficiency across
all workloads.

2 Managing CMP Cache Latency
This section describes the baseline CMP design for this

study and how we adapt the three latency management tech-
niques to this framework.

2.1 Baseline CMP Design
We target eight-processor CMP chip designs assuming

the 45 nm technology generation projected in 2010 [16].

Table 1 specifies the system parameters for all designs. E
CMP design assumes approximately 300 mm2 of available
die area [16]. We estimate eight 4-wide superscalar proc
sors would occupy 120 mm2 [29] and 16 MB of L2 cache
storage would occupy 64 mm2 [16]. The on-chip intercon-
nection network and other miscellaneous structures occu
the remaining area.

As illustrated in Figure 1, the baseline design—denot
CMP-SNUCA—assumes a Non-Uniform Cache Archite
ture (NUCA) L2 cache, derived from Kim, et al.’s S-NUCA-
2 design [27]. Similar to the original proposal, CMP
SNUCA statically partitions the address space across ca
banks, which are connected via a 2D mesh interconnect
network. CMP-SNUCA differs from the uniprocessor desig
in several important ways. First, it places eight processo
around the perimeter of the L2 cache, effectively creatin
eight distributed access locations rather than a single cent
ized location. Second, the 16 MB L2 storage array is par
tioned into 256 banks to control bank access latency [1] a
to provide sufficient bandwidth to support up to 128 simult
neous on-chip processor requests. Third, CMP-SNUCA co
nects four banks to each switch and expands the link width
32 bytes. The wider CMP-SNUCA network provides th
additional bandwidth needed by an 8-processor CMP, b
requires longer latencies as compared to the originally p
posed uniprocessor network. Fourth, shared CMP caches
subject to contention from different processors’ working se
[32], motivating 16-way set-associative banks with a pseud
LRU replacement policy [40]. Finally, we assume an idea
ized off-chip communication controller to provide consiste
off-chip latency for all processors.

2.2 Strided Prefetching
Strided or stride-based prefetchers utilize repeata

memory access patterns to tolerate cache miss latency
23, 38]. Though the L1 cache filters many memory reques
L1 and L2 misses often show repetitive access patterns. M
current prefetchers utilize miss patterns to predict cac
misses before they happen [19, 21, 43]. Specifically, curre
hardware prefetchers observe the stride between two rec
cache misses, then verify the stride using subsequent mis
Once the prefetcher reaches a threshold of fixed strid
misses, it launches a series of fill requests to reduce or eli
nate additional miss latency.

We base our prefetching strategy on the IBM Power
implementation [43] with some slight modifications. W
evaluate both L2 prefetching (i.e., between the L2 cache a
memory) and L1 prefetching (i.e., between the L1 and L
caches). Both the L1 and L2 prefetchers contain three se
rate 32-entry filter tables: positive unit stride, negative un
stride, and non-unit stride. Similar to Power 4, once a filt
table entry recognizes 4 fixed-stride misses, the prefetc
allocates the miss stream into its 8-entry stream table. Up
allocation, the L1I and L1D prefetchers launch 6 consecuti
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

ct
the
in
the
t
us-

’s
e.,

it
the

ni-
]
ed
ch
uc-
his
s to

n-
ys.
i-

Procee
1072-4
prefetches along the stream to compensate for the L1 to L2
latency, while the L2 prefetcher launches 25 prefetches.
Each prefetcher issues prefetches for both loads and stores
because, unlike the Power 4, our simulated machine uses an
L1 write-allocate protocol supporting sequential consistency.
Also we model separate L2 prefetchers per processor, rather
than a single shared prefetcher. We found that with a shared
prefetcher, interference between the different processors’
miss streams significantly disrupts the prefetching accuracy
and coverage1.

2.3 Block Migration
Block migration reduces global wire delay from L2 hit

latency by moving frequently accessed cache blocks closer
to the requesting processor. Migrating data to reduce latency
has been extensively studied in multiple-chip multiproces-
sors [7, 15, 17, 36, 41]. Kim, et al. recently applied data
migration to reduce latency inside future aggressively-
banked uniprocessor caches [27]. Their Dynamic NUCA (D-
NUCA) design used a 2-dimensional mesh to interconnect 2-
way set-associative banks, and dynamically migrated fre-
quently accessed blocks to the closest banks. NuRapid used
centralized tags and a level of indirection to decouple data
placement from set indexing, thus reducing conflicts in the
nearest banks [12]. Both D-NUCA and NuRapid assumed a
single processor chip accessing the L2 cache network from a
single location.

For CMPs, we examine a block migration scheme as an
extension to our baseline CMP-SNUCA design. Similar to
the uniprocessor D-NUCA design [27], CMP-DNUCA per-
mits block migration bylogically separating the L2 cache
banks into 16 unique banksets, where an address maps to a
bankset and can reside within any one bank of the bankset.
CMP-DNUCA physicallyseparates the cache banks into 16
different bankclusters, shown as the shaded “Tetris” pieces
in Figure 1. Each bankcluster contains one bank from every
bankset, similar to the uniprocessor “fair mapping” policy

[27]. The bankclusters are grouped into three distin
regions. The 8 banksets closest to each processor form
local regions, shown by the 8 lightly shaded bankclusters
Figure 1. The 4 bankclusters that reside in the center of
shared cache form thecenterregion, shown by the 4 darkes
shaded bankclusters in Figure 1. The remaining 4 bankcl
ters form theinter, or intermediate, region. Ideally block
migration would maximize L2 hits within each processor
local bankcluster where the uncontended L2 hit latency (i.
load-to-use latency) varies between 13 to 17 cycles and lim
the hits to another processor’s local bankcluster, where
uncontended latency can be as high as 65 cycles.

To reduce the latency of detecting a cache miss, the u
processor D-NUCA design utilized a “smart search” [27
mechanism using a partial tag array. The centrally-locat
partial tag structure [26] replicated the low-order bits of ea
bank’s cache tags. If a request missed in the partial tag str
ture, the block was guaranteed not to be in the cache. T
smart search mechanism allowed nearly all cache misse
be detected without searching the entire bankset.

In CMP-DNUCA, adopting a partial tag structure
appears impractical. A centralized partial tag structure ca
not be quickly accessed by all processors due to wire dela
Fully replicated 6-bit partial tag structures (as used in un

1. Similar to separating branch predictor histories per thread [39],
separating the L2 miss streams by processor significantly improves
prefetcher performance (up to 14 times for the workload ocean).

Table 1. 2010 System Parameters

Memory System Dynamically Scheduled Processor

split L1 I & D caches 64 KB, 2-way, 3 cycles clock frequency 10 GHz

unified L2 cache 16 MB, 256x64 KB, 16-
way, 6 cycle bank access

reorder buffer / scheduler 128 / 64 entries

L1/L2 cache block size 64 Bytes pipeline width 4-wide fetch & issue

memory latency 260 cycles pipeline stages 30

memory bandwidth 320 GB/s direct branch predictor 3.5 KB YAGS

memory size 4 GB of DRAM return address stack 64 entries

outstanding memory requests/CPU 16 indirect branch predictor 256 entries (cascaded)

Figure 1. CMP-SNUCA Layout with CMP-
DNUCA Bankcluster Regions

Local

Inter.

Center

Bankcluster KeyL1
I $
L1

D$
L1

I $
L1

D$

L
1

I $ L
1

D
$

L
1

I $ L
1

D
$

L
1

I $L
1

D
$

L
1

I $L
1

D
$

CPU 7

L1
I $ D

L1
$

L1
I $

L1
D$

CPU 6C
P

U
 0

C
P

U
 1

CPU 2 CPU 3 C
P

U
 4

C
P

U
 5
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

y,
ing
nu-
rs

e
za-
r
to
gle

ion
ct

nd
tly

che
re a
n
n-

the
C
0-
ors
er
ion

ly
e

d
A
yte

the
sor
xi-

ts

Procee
1072-4
processor D-NUCA [27]) require 1.5 MBs of state, an
extremely high overhead. More importantly, separate partial
tag structures require a complex coherence scheme that
updates address location state in the partial tags with block
migrations. However, because architects may invent a solu-
tion to this problem, we evaluate CMP-DNUCA both with
and without a perfect search mechanism.

2.4 On-chip Transmission Lines
On-chip transmission line technology reduces L2 cache

access latency by replacing slow conventional wires with
ultra-fast transmission lines [6]. The delay in conventional
wires is dominated by a wire’s resistance-capacitance prod-
uct, or RC delay. RC delay increases with improving tech-
nology as wires become thinner to match the smaller feature
sizes below. Specifically, wire resistance increases due to the
smaller cross-sectional area and sidewall capacitance
increases due to the greater surface area exposed to adjacent
wires. On the other hand, transmission lines attain significant
performance benefit by increasing wire dimensions to the
point where the inductance-capacitance product (LC delay)
determines delay [8]. In the LC range, data can be communi-
cated by propagating an incident wave across the transmis-
sion line instead of charging the capacitance across a series
of wire segments. While techniques such as low-k intermetal
dielectrics, additional metal layers, and more repeaters
across a link, will mitigate RC wire latency for short and
intermediate links, transmitting data 1 cm will require more
than 12 cycles in 2010 technology [16]. In contrast, on-chip
transmission lines implemented in 2010 technology will
transmit data 1 cm in less than a single cycle [6].

While on-chip transmission lines achieve significant
latency reduction, they sacrifice substantial bandwidth or
require considerable manufacturing cost. To achieve trans-
mission line signalling, on-chip wire dimensions and spacing
must be an order of magnitude larger than minimum pitch
global wires. To attain these large dimensions, transmission
lines must be implemented in the chip’s uppermost metal
layers. The sparseness of these upper layers severely limits

the number of transmission lines available. Alternativel
extra metal layers may be integrated to the manufactur
process, but each new metal layer adds about a day of ma
facturing time, increasing wafer cost by hundreds of dolla
[47].

Applying on-chip transmission lines to reduce th
access latency of a shared L2 cache requires efficient utili
tion of their limited bandwidth. Similar to our uniprocesso
TLC designs [6], we first propose using transmission lines
connect processors with a shared L2 cache through a sin
L2 interface, as shown in Figure 2. Because transmiss
lines do not require repeaters, CMP-TLC creates a dire
connection between the centrally located L2 interface a
the peripherally located storage arrays by routing direc
over the processors. Similar to CMP-SNUCA, CMP-TLC
statically partitions the address space across all L2 ca
banks. Sixteen banks (2 adjacent groups of 8 banks) sha
common pair of thin 8-byte wide unidirectional transmissio
line links to the L2 cache interface. To mitigate the conte
tion for the thin transmission line links, our CMP-TLC
design provides 16 separate links to different segments of
L2 cache. Also to further reduce contention, the CMP-TL
L2 interface provides a higher bandwidth connection (8
byte wide) between the transmission lines and process
than the original uniprocessor TLC design. Due to the high
bandwidth, requests encounter greater communicat
latency (2-10 cycles) within the L2 cache interface.

We also propose using transmission lines to quick
access the central banks in the CMP-DNUCA design. W
refer to this design as CMP-Hybrid. CMP-Hybrid, illustrate
in Figure 3, assumes the same design as CMP-DNUC
except the closest switch to each processor has a 32-b
wide transmission line link to a center switch in the DNUCA
cache. Because the processors are distributed around
perimeter of the chip and the distance between the proces
switches and the center switches is relatively short (appro
mately 8 mm), the transmission line links in CMP-Hybrid
are wider (32 bytes) than their CMP-TLC counterpar

L
2

 I
n

te
rf

a
c

e

CPU 4

L1
I $

$D
L1

I $
L1

L1
D$

I $
L1

CPU 2

L1
D$

L1
I $

$D
L1

L1
I $

$D
L1

I $
L1

L1
D$

I $
L1

CPU 0

L1
D$

L1
I $

$D
L1

CPU 1 CPU 6

CPU 5

CPU 3

CPU 7

Figure 2. CMP-TLC Layout

L1
I $
L1

D$
L1

I $
L1

D$

L
1

I $ L
1

D
$

L
1

I $ L
1

D
$

L
1

I $L
1

D
$

L
1

I $L
1

D
$

CPU 7

L1
I $ D

L1
$

L1
I $

L1
D$

CPU 6C
P

U
 0

C
P

U
 1

CPU 2 CPU 3 C
P

U
 4

C
P

U
 5

Figure 3. CMP-Hybrid Layout
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

ork
th

er-
in
].
2
an
d
ss

-
and
e

he
ns
of
by
-

y
e.
2
r-
fi-
K
no
ub-
r
of
L2
ial

-
hes
di-

Procee
1072-4
(8 bytes). The transmission line links of CMP-Hybrid pro-
vide low latency access to those blocks that tend to congre-
gate in the center banks of the block migrating NUCA cache,
Section 5.3.

Figure 4 compares the uncontended L2 cache hit latency
between the CMP-SNUCA, CMP-TLC, and CMP-Hybrid
designs. The plotted hit latency includes L1 miss latency, i.e.
it plots the load-to-use latency for L2 hits. While CMP-TLC
achieves a much lower average hit latency than CMP-
SNUCA, CMP-SNUCA exhibits lower latency to the closest
1 MB to each processor. For instance, Figure 4 shows all
processors in the CMP-SNUCA design can access their local
bankcluster (6.25% of the entire cache) in 18 cycles or less.
CMP-DNUCA attempts to maximize the hits to this closest
6.25% of the NUCA cache through migration, while CMP-
TLC utilizes a much simpler logical design and provides fast
access for all banks. CMP-Hybrid uses transmission lines to
attain similar average hit latency as CMP-TLC, as well as
achieving fast access to more banks than CMP-SNUCA.

3 Methodology
We evaluated all cache designs using full system simula-

tion of a SPARC V9 CMP running Solaris 9. Specifically, we
used Simics [33] extended with the out-of-order processor
model, TFSim [34], and a memory system timing model.
Our memory system implements a two-level directory cache-
coherence protocol with sequential memory consistency. The
intra-chip MSI coherence protocol maintains inclusion
between the shared L2 cache and all on-chip L1 caches. All
L1 requests and responses are sent via the L2 cache allowing
the L2 cache to maintain up-to-date L1 sharer knowledge.
The inter-chip MOSI coherence protocol maintains directory
state at the off-chip memory controllers and only tracks
which CMP nodes contain valid block copies. Our memory
system timing model includes a detailed model of the intra-
and inter-chip network. Our network models all messages
communicated in the system including all requests,

responses, replacements, and acknowledgements. Netw
routing is performed using a virtual cut-through scheme wi
infinite buffering at the switches.

We studied the CMP cache designs for various comm
cial and scientific workloads. Alameldeen, et al. described
detail the four commercial workloads used in this study [2
We also studied four scientific workloads: two Splash
benchmarks [48]: barnes (16k-particles) and oce
(), and two SPECOMP benchmarks [4]: apsi an
fma3d. We used a work-related throughput metric to addre
multithreaded workload variability [2]. Thus for the com
mercial workloads, we measured transactions completed
for the scientific workloads, runs were completed after th
cache warm-up period indicated in Table 2. However, for t
specOMP workloads using the reference input sets, ru
were too long to be completed in a reasonable amount
time. Instead, these loop-based benchmarks were split
main loop completion. This allowed us to evaluate all work
loads using throughput metrics, rather than IPC.

4 Strided Prefetching
Both on and off-chip strided prefetching significantl

improve the performance of our CMP-SNUCA baselin
Figure 5 presents runtime results for no prefetching, L
prefetching only, and L1 and L2 prefetching combined, no
malized to no prefetching. Error bars signify the 95% con
dence intervals [3] and the absolute runtime (in 10
instructions per transaction/scientific benchmark) of the
prefetch case is presented below. Figure 5 illustrates the s
stantial benefit from L2 prefetching, particularly for regula
scientific workloads. L2 prefetching reduces the run times
ocean and apsi by 43% and 59%, respectively. Strided
prefetching also improves performance of the commerc
workloads by 4% to 17%.

The L1&L2 prefetching bars of Figure 5 indicate on
chip prefetching between each processor’s L1 I and D cac
and the shared L2 cache improves performance by an ad

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

L
a
ta

n
cy

 (
cy

cl
e
s)

% of L2 Cache Storage

CMP-SNUCA
CMP-TL

CMP-Hybrid

Figure 4. CMP-SNUCA vs. CMP-TLC vs. CMP-
Hybrid Uncontended L2 Hit Latency

Table 2. Evaluation Methodology

Bench Fast Forward Warm-up Executed

Commercial Workloads (unit = transactions)

apache 500000 2000 500

zeus 500000 2000 500

jbb 1000000 15000 2000

oltp 100000 300 100

Scientific Workloads (unit = billion instructions)

barnes None 1.9 run completion

ocean None 2.4 run completion

apsi 88.8 4.64 loop completion

fma3d 190.4 2.08 loop completion

514 514×
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

d
ur
-
L1

ist-
ibe

g
er-
P
e

he
o-
ict
iti-
che
of

-
tific
%

hat
ly
-

es-
the
ly
le

-
by
7

s
ien-

it
9%

racy

Procee
1072-4
tional 6% on average. On-chip prefetching benefits all
benchmarks except for jbb and barnes, which have high local
L1 cache hit rates of 91% and 99% respectively. Table 3
breaks down the performance of stride prefetching into:

A Prefetch hit is defined as the first reference to a prefetched
block including a “partial hit” to a block still in-flight.
Except for L2 prefetches in jbb and barnes, less than 12% of
prefetch hits were partial hits. Overall, as communication
latency increases, the significant performance improvement
attainable by prefetching ensures its continued integration
into future high performance memory systems.

5 Block Migration
CMP caches utilizing block migration must effectively

manage multiple processor working sets in order to reduce
cache access latency. Although Kim, et al. [27] showed
block migration significantly reduced cache access latency in
a non-prefetching uniprocessor NUCA cache, most future

large on-chip caches will implement hardware-directe
prefetching and service multiple on-chip processors. O
CMP-DNUCA design extends block migration to an 8-pro
cessor CMP cache and supports strided prefetching at the
and L2 cache levels. We characterize the working sets ex
ing in a shared CMP cache in Section 5.1. Then we descr
our CMP cache implementing block migration in
Section 5.2, and present evaluation results in Section 5.3.

5.1 Characterizing CMP Working Sets
We analyze the working sets of the workloads runnin

on an eight-processor CMP. Specifically, we focus on und
standing the potential benefits of block migration in a CM
cache by observing the behavior of L2 cache blocks. W
model a single-banked 16 MB inclusive shared L2 cac
with 16-way associativity and a uniform access time to is
late the sharing activity from access latency and confl
misses. No prefetching is performed in these runs. To m
gate cold start effects, the runs are long enough that L2 ca
misses outnumber physical L2 cache blocks by an order
magnitude.

Figure 6 shows the cumulative distribution of the num
ber of processors that access each block. For the scien
workloads, the vast majority of all blocks—between 70.3
and 99.9%—are accessed by a single processor. Somew
surprisingly, even the commercial workloads share relative
few blocks. Only 5% to 28% of blocks in the evaluated com
mercial workloads are accessed by more than two proc
sors. Because relatively few blocks are shared across
entire workload spectrum, block migration can potential
improve all workloads by moving blocks towards the sing
processor that requests them.

Although relatively few blocks are shared in all work
loads, a disproportionate fraction of L2 hits are satisfied
highly shared blocks for the commercial workloads. Figure
shows the cumulative distribution of L2 hits for block
accessed by 1 to 8 processors. The three array-based sc
tific workloads (fma3d [4], apsi [4], and ocean [48]) exhib
extremely low inter-processor request sharing. Less than

Table 3. Prefetching Characteristics

L1 I Cache L1 D Cache L2 Cache

benchmark prefetches coverage accuracy prefetches coverage accuracy prefetches coverage accu

apache 7.6 18.3% 48.7% 5.3 9.3% 61.7% 7.0 39.0% 49.8%

jbb 2.5 30.1 57.0 2.0 7.7 35.9 3.0 38.3 36.8

oltp 15.1 26.7 53.5 1.4 5.9 59.6 1.9 35.0 50.3

zeus 11.3 19.0 47.9 4.9 15.7 78.6 8.0 47.2 56.7

barnes 0.0 9.1 38.7 0.2 3.0 20.8 0.0 12.3 22.8

ocean 0.0 22.1 50.9 17.6 85.9 88.3 4.0 91.3 87.5

apsi 0.0 10.8 38.5 5.6 46.7 99.4 5.7 98.7 98.8

fma3d 0.0 12.4 33.1 6.7 32.8 82.5 11.2 36.8 67.9

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

ti
m

e

Benchmarks

CMP-SNUCA no pf

CMP-SNUCA L2 pf

CMP-SNUCA L1&L2 pf

31

apache
5.1

jbb
200

oltp
15

zeus
38000

barnes
28000

ocean
21000

apsi
32000

fma3d

Figure 5. Normalized Execution: Strided
Prefetching

pr ef et ch (prefetches), and=rate
prefetches

instructions 1000⁄
--

cover age%
prefetchHits

prefetchHits misses+
--- 100×= (coverage), and

accuracy %
prefetchHits
prefetches

---------------------------------- 100×= (accuracy).
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

-
ive
lp

lo-
P-
t
nk
le
ot
lso
ive

st
o-
cal
es
o-
-

ng

Procee
1072-4
of all L2 hits are to blocks shared by multiple processors.
However, for barnes, utilizing a tree data structure [48], 71%
of L2 hits are to blocks shared among multiple processors.
For the commercial workloads, more than 39% of L2 hits are
to blocks shared byall processors, with as many as 71% of
hits for oltp. Figure 8 breaks down the request type over the
number of processors to access a block. In the four commer-
cial workloads, instruction requests (GET_INSTR) make up
over 56% of the L2 hits to blocks shared by all processors.
Kundu et al. [31] recently confirmed the high degree of
instruction sharing in a shared CMP cache running oltp. The
large fraction of L2 hits to highly shared blocks complicates
block migration in CMP-DNUCA. Since shared blocks will
be pulled in all directions, these blocks tend to congregate in
the center of the cache rather than toward just one processor.

5.2 Implementing CMP Block Migration
Our CMP-DNUCA implementation employs block

migration within a shared L2 cache. This design strives to
reduce additional state while providing correct and efficient
allocation, migration and search policies.

Allocation. The allocation policy seeks an efficient ini
tial placement for a cache block, without creating excess
cache conflicts. While 16-way set-associative banks he
reduce conflicts, the interaction between migration and al
cation can still cause unnecessary replacements. CM
DNUCA implements a simple, static allocation policy tha
uses the low-order bits of the cache tag to select a ba
within the block’s bankset (i.e., the bankcluster). This simp
scheme works well across most workload types. While n
studied in this paper, we conjecture that static allocation a
works well for heterogeneous workloads, because all act
processors will utilize the entire L2 cache storage.

Migration. We investigated several different migration
policies for CMP-DNUCA. A migration policy should maxi-
mize the proportion of L2 hits satisfied by the banks close
to a processor. Directly migrating blocks to a requesting pr
cessor’s local bankcluster increases the number of lo
bankcluster hits. However, direct migration also increas
the proportion of costly remote hits satisfied by a distant pr
cessors’ local bankcluster. Instead CMP-DNUCA imple
ments a gradual migration policy that moves blocks alo
the six bankcluster chain:

0 2 4 6 8
of Processors to Access the Block

0

20

40

60

80

100
%

 o
f

U
ni

qu
e

B
lo

ck
s apsi

fma3d
ocean
jbb
zeus
barnes
apache
oltp

Figure 6. Cumulative Percentage of Unique L2
Blocks vs. # of Processors to Access the Block

During its L2 Cache Lifetime

0 2 4 6 8
of Processors to Access the Block

0

20

40

60

80

100

%
 o

f
T

ot
al

 L
2

H
it

s fma3d
apsi
ocean
jbb
barnes
zeus
apache
oltp

Figure 7. Cumulative Percentage of Total L2
Cache Hits vs. # of Processors to Access a

Block During its L2 Cache Lifetime

0

20

40

60

80

100

%
 o

f T
ot

al
 L

2
H

its

Benchmarks

GETX
UPGRADE
GETS
GET_INSTR

12345678
apache

12345678
jbb

12345678
oltp

12345678
zeus

12345678
barnes

12345678
ocean

12345678
apsi

12345678
fma3d

Figure 8. Request Type Distribution vs. # of Processors to Access a Block During its L2 Cache Lifetime
din
45
gs of the 37th International Symposium on Microarchitecture (MICRO-3
1/04 $20.00 © 2004 IEEE
www.manaraa.com

7 2004)

at
ng
ns
P-

-
si,
e

arch
ces
est
ses

t.

ks
al
s
rs.
e
ly

s-
e

-
f
a3d
s-
dis-
the

ble
es
’s
of

Procee
1072-4
The gradual migration policy allows blocks frequently
accessed by one processor to congregate near that particular
processor, while blocks accessed by many processors tend to
move within the center banks. Furthermore the policy sepa-
rates the different block types without requiring extra state or
complicated decision making. Only the current bank location
and the requesting processor id is needed to determine which
bank, if any, a block should be moved to.

Search.Similar to the best performing uniprocessor D-
NUCA search policy, we advocate using a two-phase multi-
cast search for CMP-DNUCA. The goal of the two-phase
search policy is to maximize the number of first phase hits,
while limiting the number of futile request messages. Based
on the previously discussed gradual migration policy, hits
most likely occur in one of six bankclusters: the requesting
processor’s local or inter bankclusters, or the four center
bankclusters. Therefore the first phase of our search policy
broadcasts a request to the appropriate banks within these six
bankclusters. If all six initial bank requests miss, we broad-
cast the request to the remaining 10 banks of the bankset.
Only after a request misses in all 16 banks of the bankset
will a request be sent off chip. Waiting for 16 replies over
two phases adds significant latency to cache misses. Unfortu-
nately, as discussed in Section 2.3, implementing a smart
search mechanism to minimize search delay in CMP-
DNUCA is difficult. Instead, we provide results in the fol-
lowing section for an idealized smart search mechanism.

A unique problem of CMP-DNUCA is the potential for
false misses, where L2 requests fail to find a cache block
because it is in transit from one bank to another. It is essen-
tial that false misses are not naively serviced by the direc-
tory, otherwise two valid block copies could exist within the
L2 cache creating a coherence nightmare. One possible solu-
tion is requests could consult a second set of centralized on-
chip tags not effected by block migration before going off
chip. However, this second tag array would cost over 1 MB
of extra storage and require approximately 1 KB of data to
be read and compared on every lookup—because each set
logically appears 256-way associative.

Instead, CMP-DNUCA compensates for false misses by
relying on the directory sharing state to indicate when a pos-
sible false miss occurred. If the directory believes a valid
block copy already exists on chip, the L2 cache stops migra-
tions and searches for an existing valid copy before using the
received data. Only after sequentially examining all banks of
a bankset with migration disabled will a cache be certain the
block isn’t already allocated. While the meticulous examina-
tion ensures correctness, it is very slow. Therefore, it is
important to ensure false misses don’t happen frequently.

We significantly reduced the frequency of false misses
by implementing a lazy migration mechanism. We observed

that almost all false misses occur for a few hot blocks th
are rapidly accessed by multiple processors. By delayi
migrations by a thousand cycles, and canceling migratio
when a different processor accesses the same block, CM
DNUCA still performs at least 94% of all scheduled migra
tions, while reducing false misses by at least 99%. In ap
for instance, lazy migration reduced the fraction of fals
misses from 18% of all misses to less than 0.00001%.

5.3 Evaluating CMP Block Migration
Our CMP-DNUCA evaluation shows block migration

creates a performance degradation unless a smart se
mechanism is utilized. A smart search mechanism redu
contention by decreasing the number of unsuccessful requ
messages and reduces L2 miss latency by sending L2 mis
directly off chip before consulting all 16 banks of a bankse

The high demand for the equally distant central ban
restricts the benefit of block migration for the commerci
workloads. Figure 9 shows in all four commercial workload
over 47% of L2 hits are satisfied in the center bankcluste
The high number of central hits directly correlates to th
increased sharing in the commercial workloads previous
shown in Figure 7. Figure 10 graphically illustrates the di
tribution of L2 hits for oltp, where the dark squares in th
middle represent the heavily utilized central banks.

Conversely, CMP-DNUCA exhibits a mixture of behav
ior running the four scientific workloads. Due to a lack o
frequently repeatable requests, barnes, apsi, and fm
encounter 30% to 62% of L2 hits in the distant 10 bankclu
ters. These hits cost significant performance because the
tant banks are only searched during the second phase. On
other hand, the scientific workload ocean contains repeata
requests and exhibits very little sharing. Figure 9 indicat
CMP-DNUCA successfully migrates over 60% of ocean
L2 hits to the local bankclusters. The dark colored squares

other
local

other
inter

other
center

my
center

my
inteṙ

my
local⇒ ⇒ ⇒ ⇒ ⇒

0

20

40

60

80

100

%
 o

f
T

ot
al

 L
2

H
its

Benchmarks

Other 10 Bankclusters

Center 4 Bankclusters

Inter. Bankcluster

Local Bankcluster

apache jbb oltp zeus barnes ocean apsi fma3d

Figure 9. L2 Hit Distribution of CMP-DNUCA
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

P-
e
ase
lay

w
ed

-
the
es
us
,
p
-

si-
es

the
.

s-
P-

ankclus-
fied by a
’s hits.

Procee
1072-4
Figure 11 graphically display how well CMP-DNUCA is
able to split ocean’s data set into the local bankclusters.

The limited success of block migration along with the
slow two-phase search policy causes CMP-DNUCA to actu-
ally increase L2 hit and L2 miss latency. Figure 12 indicates
CMP-DNUCA only reduces L2 hit latency versus CMP-
SNUCA for one workload, ocean. The latency increase for
the other seven workloads results from second phase hits
encountering 31 to 51 more delay cycles than CMP-SNUCA

L2 hits. The added latency of second phase hits in CM
DNUCA is due to the delay waiting for responses from th
first phase requests. Furthermore due to the slow two-ph
search policy, L2 misses also encounter 23 to 65 more de
cycles compared to CMP-SNUCA.

A smart search mechanism solves CMP-DNUCA’s slo
search problems. Figure 12 shows the L2 hit latency attain
by CMP-DNUCA with perfect search (perfect CMP
DNUCA), where a processor sends a request directly to
cache bank storing the block. Perfect CMP-DNUCA reduc
L2 hit latency across all workloads by 7 to 15 cycles vers
CMP-SNUCA. Furthermore, when the block isn’t on chip
perfect CMP-DNUCA immediately generates an off-chi
request, allowing its L2 miss latency to match that of CMP
SNUCA. Although the perfect search mechanism is infea
ble, architects may develop practical smart search schem
in the future. We assume perfect searches for the rest of
paper to examine the potential benefits of block migration

6 Targeting On-chip Latency In Isolation
On-chip prefetching performs competitively with the

more extravagant techniques of block migration and tran
mission lines. A comparison between the bars labeled CM
SNUCA L1&L2 pf to those labeled perfect CMP-DNUCA

All CPUs

CPU 0 CPU 1

All CPUs

CPU 0 CPU 1

CPU 5

CPU 2 CPU 3

CPU 6 CPU 7CPU 4 CPU 5

CPU 2

CPU 6 CPU 7

CPU 3

CPU 4

Figure 10. oltp L2 Hit Distribution Figure 11. ocean L2 Hit Distribution

The figures above illustrate the distribution of cache hits across the L2 cache banks. The Tetris shapes indicate the b
ters and the shaded squares represent the individual banks. The shading indicates the fraction of all L2 hits to be satis
given bank, with darker being greater. The top figure illustrates all hits, while the 8 smaller figures illustrate each CPU

0

20

40

60

80

C
yc

le
s

Benchmarks

CMP-SNUCA no pf

CMP-DNUCA no pf

perfect CMP-DNUCA no pf

apache jbb oltp zeus barnes ocean apsi fma3d

Figure 12. Avg. L2 Hit Latency: No Prefetching
dings of
451/04 $
 the 37th International Symposium on Microarchitecture (MICRO-37 2004)
20.00 © 2004 IEEE
www.manaraa.com

c-

-
nd
ly
ht

d,

d,
nt

n
r-
n

ine
2
-
he
ed
rk-

Procee
1072-4
L2 pf and CMP-TLC L2 pf in Figure 13 reveals on-chip
prefetching achieves the greatest single workload improve-
ment over the baseline (CMP-SNUCA L2 pf)—22% for
ocean. In addition, on-chip prefetching improves perfor-
mance by at least 4% for the workloads zeus, apsi, and
fma3d.

Block migration improves performance by 2%–4% for 6
of the 8 workloads. However, for apache, an increase in
cache conflicts causes a 4% performance loss. As illustrated
by Figure 9, the four center bankclusters (25% of the total
L2 storage) incur 60% of the L2 hits. The unbalanced load
increases cache conflicts, resulting in a 13% increase in L2
misses versus the baseline design.

By directly reducing wire latency, transmission lines
consistently improve performance, but bandwidth contention
prevents them from achieving their full potential. Figure 13
shows transmission lines consistently improve performance
between 3% to 10% across all workloads—8% on average.
However, CMP-TLC would do even better, except for band-
width contention that accounts for 26% of the L2 hit latency.

Overall, CMP-TLC is likely to improve a larger number
of workloads because transmission lines reduce latency
without relying on predictable workload behavior. On the
other hand, prefetching and block migration potentially pro-
vide a greater performance improvement for a smaller num-
ber of workloads.

7 Merging Latency Management Techniques
None of the three evaluated techniques subsume

another, but rather the techniques can work in concert to
manage wire latency. Section 7.1 demonstrates prefetching is
mostly orthogonal to transmission lines and block migration,
while Section 7.2 evaluates combining all three techniques:
prefetching, block migration, and transmission lines.

7.1 Combining with On-chip Prefetching
Prefetching, which reduces latency by predicting the

next cache block to be accessed, is orthogonal to block
migration. However, for some scientific workloads, prefetch-

ing’s benefit slightly overlaps the consistent latency redu
tion of CMP-TLC. The bars labeled CMP-DNUCA L1&L2
pf and CMP-TLC L1&L2 pf in Figure 13 show the perfor-
mance of CMP-DNUCA and CMP-TLC combined with on
chip prefetching. A comparison between the L2 pf bars a
the L1&L2 pf bars reveals L1 prefetching provides rough
equal improvement across all three designs. The only slig
deviation is on-chip prefetching improves CMP-TLC by 5%
to 21% for the scientific workloads ocean, apsi, and fma3
while improving CMP-DNUCA by 6% to 27%. While com-
bining each technique with prefetching is straightforwar
combining all three techniques together requires a differe
cache design.

7.2 Combining All Techniques
CMP-Hybrid combines prefetching and transmissio

lines and block migration to achieve the best overall perfo
mance. Figure 14 shows that CMP-Hybrid combined with o
and off-chip prefetching (perfect CMP-Hybrid L1&L2 pf)
reduces runtime by 2% to 19% compared to the basel
design. As previously shown in Figure 9, 25% to 62% of L
hits in CMP-DNUCA are to the center banks for all work
loads except ocean. By providing low-latency access to t
center banks, Figure 15 indicates CMP-Hybrid (bars labell
H) reduces the average L2 hit latency for these seven wo

0.0

0.5

1.0
N

or
m

al
iz

ed
 R

un
tim

e

Benchmarks

CMP-SNUCA L2 pf
CMP-SNUCA L1&L2 pf
CMP-TLC L2 pf
CMP-TLC L1&L2 pf
perfect CMP-DNUCA L2 pf
perfect CMP-DNUCA L1&L2 pf

31
apache

5.1
jbb

190
oltp

15
zeus

38000
barnes

20000
ocean

20000
apsi

32000
fma3d

Figure 13. Normalized Execution: Latency Reduction Techniques with Prefetching

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

ti
m

e

Benchmarks

CMP-SNUCA L1&L2 pf

perfect CMP-DNUCA L1&L2 pf

CMP-TLC L1&L2 pf

perfect CMP-Hybrid L1&L2 pf

32

apache
5.1

jbb
190

oltp
16

zeus
38000

barnes
20000

ocean
20000

apsi
31000

fma3d

Figure 14. Normalized Execution: Combining All
Techniques
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

r
e-
ed
-
tra
L1
nd

d,
P-
d
gns

s
n

n-
d

nt
to
as
ip
y
a-

ten-
-
g
ip
ut
-

a
ck
m
vi-
r

Procee
1072-4
loads by 6 to 9 cycles versus CMP-DNUCA (bars labelled
D). As previously mentioned in Section 6, link contention
within the centralized network of CMP-TLC accounts for
26% of delay for L2 hits. CMP-Hybrid’s high bandwidth,
distributed network reduces contention, allowing for better
utilization of transmission line’s low latency. Figure 15
shows L2 hits within CMP-Hybrid encounter up to 8 fewer
contention delay cycles as compared those within CMP-TLC
(bars labelled T).

While CMP-Hybrid achieves impressive performance,
one should note it also relies on a good search mechanism
for its performance. Furthermore, CMP-Hybrid requires both
extra manufacturing cost to produce on-chip transmission
lines and additional verification effort to implement block
migration.

8 Energy Efficiency
Although the majority of L2 cache power consumption

is expected to be leakage power [14], we analyze each net-
work’s dynamic energy-delay product to determine the effi-
ciency of each design. Similar to our previous study [6], we
estimate the network energy by measuring the energy used
by the wires as well as the switches. For conventional RC
interconnect using repeaters, we measure the energy required
to charge and discharge the capacitance of each wire seg-
ment. For transmission lines, we measure the energy
required to create the incident wave. We do not include the
dynamic energy consumed within the L2 cache banks, but
we do note block migration requires accessing the storage
banks about twice as often as the static designs.

Prefetching and block migration improve network effi-
ciency for some scientific workloads, while transmission
lines potentially improve efficiency across all workloads.
Figure 16 plots the product of the networks’ dynamic energy
consumption and the design’s runtime normalized to the
value of the CMP-SNUCA design running ocean. The two
block migrating designs, CMP-DNUCA and CMP-Hybrid,
assume the perfect search mechanism. Figure 16 shows the
high accuracy and coverage of L1 and L2 prefetching results

in a reduction of network energy-delay by 18% to 54% fo
all designs with ocean. Also, by successfully migrating fr
quently requested blocks to the more efficiently access
local banks, CMP-DNUCA achieves similar network effi
ciency as CMP-SNUCA for ocean despite sending ex
migration messages. However, both block migration and
prefetching increase network energy-delay between 17% a
53% for the commercial workload oltp. On the other han
those designs using transmission lines, CMP-TLC and CM
Hybrid, reduce network energy-delay by 26% for oltp an
33% for ocean on average versus their counterpart desi
that exclusively rely on conventional wires, CMP-SNUCA
and CMP-DNUCA. In general, workload characteristic
affect prefetching and block migration efficiency more tha
transmission line efficiency.

9 Conclusions
Managing on-chip wire delay in CMP caches is esse

tial in order to improve future system performance. Stride
prefetching is a common technique utilized by curre
designs to tolerate wire delay. As wire delays continue
increase, architects will turn to additional techniques such
block migration or transmission lines to manage on-ch
delay. While block migration effectively reduces wire dela
in uniprocessor caches, we discover block migration’s cap
bility to improve CMP performance relies on a difficult to
implement smart search mechanism. Furthermore, the po
tial benefit of block migration in a CMP cache is fundamen
tally limited by the large amount of inter-processor sharin
that exists in some workloads. On the other hand, on-ch
transmission lines consistently improve performance, b
their limited bandwidth becomes a bottleneck when com
bined with on-chip prefetching. Finally, we investigate
hybrid design, which merges transmission lines, blo
migration, and prefetching. Adding transmission lines fro
each processor to the center of the NUCA cache could alle
ate the deficiencies of implementing block migration o
transmission lines alone.

0

10

20

30

40

50

C
yc

le
s

Benchmarks

contended

uncontended

D T H
apache

D T H
jbb

D T H
oltp

D T H
zeus

D T H
barnes

D T H
ocean

D T H
apsi

D T H
fma3d

Figure 15. Avg. L2 Hit Latency: Combining
Latency Reduction Techniques

none L2 only L1 & L2
Prefetching

0

1

2

3

N
or

m
al

iz
ed

 (
N

et
w

or
k

E
ne

rg
y)

 x
 (

D
el

ay
)

CMP-DNUCA
CMP-Hybrid
CMP-SNUCA
CMP-TLC

Figure 16. Normalized Network Energy-Delay:
oltp and ocean

oltp

ocean
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

In
ter

he
n
ter

l

y

re

e

g

In

n

ed

st

ce

.

nd

e.

.
r

a

ic
l

ffs

ge.

o,
r
n
ter

n

4
1.
4

e.
.

a

e
al
l

in
p
l

Procee
1072-4
Acknowledgements

We thank Alaa Alameldeen, Mark Hill, Mike Marty,
Kevin Moore, Phillip Wells, Allison Holloway, Luke Yen,
the Wisconsin Computer Architecture Affiliates, Virtutech
AB, the Wisconsin Condor group, the Wisconsin Computer
Systems Lab, and the anonymous reviewers for their com-
ments on this work.

References

[1] V. Agarwal, S. W. Keckler, and D. Burger. The Effect of Technology
Scaling on Microarchitectural Structures.Technical Report TR-00-02,
Department of Computer Sciences, UT at Austin, May 2001.

[2] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu,
D. J. Sorin, M. D. Hill, and D. A. Wood. Simulating a $2M
Commercial Server on a $2K PC.IEEE Computer, 36(2):50–57, Feb.
2003.

[3] A. R. Alameldeen and D. A. Wood. Variability in Architectural
Simulations of Multi-threaded Workloads. InProceedings of the Ninth
IEEE Symposium on High-Performance Computer Architecture, pages
7–18, Feb. 2003.

[4] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and
B. Parady. SPEComp: A New Benchmark Suite for Measuring Parallel
Computer Performance. InWorkshop on OpenMP Applications and
Tools, pages 1–10, July 2001.

[5] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A
Scalable Architecture Based on Single-Chip Multiprocessing. In
Proceedings of the 27th Annual International Symposium on Computer
Architecture, pages 282–293, June 2000.

[6] B. M. Beckmann and D. A. Wood. TLC: Transmission Line Caches. In
Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec. 2003.

[7] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum.
Scheduling and Page Migration for Multiprocessor Compute Servers.
In Proceedings of the 6th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Oct. 1994.

[8] R. T. Chang, N. Talwalkar, C. P. Yue, and S. S. Wong. Near Speed-of-
Light Signaling Over On-Chip Electrical Interconnects.IEEE Journal
of Solid-State Circuits, 38(5):834–838, May 2003.

[9] T.-F. Chen and J.-L. Baer. Reducing Memory Latency via Non-
Blocking and Prefetching Caches. InProceedings of the Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 51–61, Oct. 1992.

[10] T.-F. Chen and J.-L. Baer. A Performance Study of Software and
Hardware Data Prefetching Schemes. InProceedings of the 21st
Annual International Symposium on Computer Architecture, pages
223–232, Apr. 1994.

[11] T.-F. Chen and J.-L. Baer. Effective Hardware-Based Data Prefetching
for High Performance Processors.IEEE Transactions on Computers,
44(5):609–623, May 1995.

[12] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance
Associativity for High-Performance Energy-Efficient Non-Uniform
Cache Architectures. InProceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2003.

[13] F. Dahlgren and P. Stenström. Effectiveness of Hardware-Based Stride
and Sequential Prefetching in Shared-Memory Multiprocessors. In
Proceedings of the First IEEE Symposium on High-Performance
Computer Architecture, pages 68–77, Feb. 1995.

[14] B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy,
J. Kavalieros, A. Murthy, and R. Chau. Transistor Elements for 30nm
Physical Gate Lengths and Beyond.Intel Technology Journal, May
2002.

[15] B. Falsafi and D. A. Wood. Reactive NUMA: A Design for Unifying
S-COMA and CC-NUMA. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages 229–240,
June 1997.

[16] I. T. R. for Semiconductors. ITRS 2003 Edition. Semiconductor
Industry Association, 2003.
http://public.itrs.net/Files/2003ITRS/Home2003.htm.

[17] E. Hagersten, A. Landin, and S. Haridi. DDM–A Cache-Only Memory
Architecture.IEEE Computer, 25(9):44–54, Sept. 1992.

[18] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and
K. Olukotun. The Stanford Hydra CMP.IEEE Micro, 20(2):71–84,
March-April 2000.

[19] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel. The microarchitecture of the Pentium 4 processor.Intel
Technology Journal, Feb. 2001.

[20] R. Ho, K. W. Mai, and M. A. Horowitz. The Future of Wires.
Proceedings of the IEEE, 89(4):490–504, Apr. 2001.

[21] T. Horel and G. Lauterbach. UltraSPARC-III: Designing Third
Generation 64-Bit Performance.IEEE Micro, 19(3):73–85, May/June

1999.
[22] D. Joseph and D. Grunwald. Prefetching Using Markov Predictors.

Proceedings of the 24th Annual International Symposium on Compu
Architecture, pages 252–263, June 1997.

[23] N. P. Jouppi. Improving Direct-Mapped Cache Performance by t
Addition of a Small Fully-Associative Cache and Prefetch Buffers. I
Proceedings of the 17th Annual International Symposium on Compu
Architecture, pages 364–373, May 1990.

[24] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 Chip: A Dua
Core Multithreaded Processor.IEEE Micro, 24(2):40–47, Mar/Apr
2004.

[25] M. Karlsson, K. E. Moore, E. Hagersten, and D. A. Wood. Memor
System Behavior of Java-Based Middleware. InProceedings of the
Ninth IEEE Symposium on High-Performance Computer Architectu,
pages 217–228, Feb. 2003.

[26] R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill. Inexpensiv
Implementations of Set-Associativity.16th Annual International
Symposium on Computer Architecture, May 1989.

[27] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-Uniform
Cache Structure for Wire-Dominated On-Chip Caches.10th
International Conference on Architectural Support for Programmin
Languages and Operating Systems (ASPLOS), Oct. 2002.

[28] P. Kongetira. A 32-way Multithreaded SPARCÆ Processor.
Proceedings of the 16th HotChips Symposium, Aug. 2004.

[29] G. K. Konstadinidis and et. al. Implementation of a Third-Generatio
1.1-GHz 64-bit Microprocessor.IEEE Journal of Solid-State Circuits,
37(11):1461–1469, Nov 2002.

[30] K. Krewell. UltraSPARC IV Mirrors Predecessor.Microprocessor
Report, pages 1–3, Nov. 2003.

[31] P. Kundu, M. Annavaram, T. Diep, and J. Shen. A Case for Shar
Instruction Cache on Chip Multiprocessors running OLTP.Computer
Architecture News, 32(3):11–18, 2004.

[32] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the La
Line of Defense before Hitting the Memory Wall for CMPs. In
Proceedings of the Tenth IEEE Symposium on High-Performan
Computer Architecture, Feb. 2004.

[33] P. S. Magnusson et al. Simics: A Full System Simulation Platform
IEEE Computer, 35(2):50–58, Feb. 2002.

[34] C. J. Mauer, M. D. Hill, and D. A. Wood. Full System Timing-First
Simulation.2002 ACM Sigmetrics Conference on Measurement a
Modeling of Computer Systems, pages 108–116, June 2002.

[35] C. McNairy and D. Soltis. Itanium 2 Processor Microarchitectur
IEEE Micro, 23(2):44–55, March/April 2003.

[36] H. E. Mizrahi, J.-L. Baer, E. D. Lazowska, and J. Zahorjan
Introducing Memory into the Switch Elements of Multiprocesso
Interconnection Networks. InProceedings of the 16th Annual
International Symposium on Computer Architecture, May 1989.

[37] B. A. Nayfeh and K. Olukotun. Exploring the Design Space for
Shared-Cache Multiprocessor. InProceedings of the 21st Annual
International Symposium on Computer Architecture, Apr. 1994.

[38] A. Pajuelo, A. Gonz·lez, and M. Valero. Speculative Dynam
Vectorization. In Proceedings of the 29th Annual Internationa
Symposium on Computer Architecture, May 2002.

[39] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design Tradeo
for the Alpha EV8 Conditional Branch Predictor*.29th Annual
International Symposium on Computer Architecture, May 2002.

[40] K. So and R. N. Rechtschaffen. Cache Operations by MRU Chan
IEEE Transactions on Computers, 37(6):700–709, June 1988.

[41] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorlo
A. Gupta, and J. Hennessy. Flexible Use of Memory fo
Replication/Migration in Cache-Coherent DSM Multiprocessors. I
Proceedings of the 25th Annual International Symposium on Compu
Architecture, pages 342–355, June 1998.

[42] D. Sylvester and K. Keutzer. Getting to the Bottom of Deep Submicro
II: a Global Wiring Paradigm. InProceedings of the 1999 International
Symposium on Physical Design, pages 193–200, 1999.

[43] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER
System Microarchitecture. IBM Server Group Whitepaper, Oct. 200

[44] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER
System Microarchitecture.IBM Journal of Research and Development,
46(1), 2002.

[45] M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and S. S. Ts
The MAJC Architecture: A Synthesis of Parallelism and Scalability
IEEE Micro, 20(6):12–25, November-December 2000.

[46] D. M. Tullsen and S. J. Eggers. Limitations of Cache Prefetching on
Bus-Based Multiprocessor.20th Annual International Symposium on
Computer Architecture, pages 278–288, May 1993.

[47] J. Turley.The Essential Guide to Semiconductors. Prentice Hall, 2003.
[48] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Th

SPLASH-2 Programs: Characterization and Methodologic
Considerations. InProceedings of the 22nd Annual Internationa
Symposium on Computer Architecture, pages 24–37, June 1995.

[49] Z. Zhang and J. Torrellas. Speeding up Irregular Applications
Shared-Memory Multiprocessors: Memory Binding and Grou
Prefetching. In Proceedings of the 22nd Annual Internationa
Symposium on Computer Architecture, pages 188–199, June 1995.
www.manaraa.com
dings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
451/04 $20.00 © 2004 IEEE

	Managing Wire Delay in Large Chip-Multiprocessor Caches
	Bradford M. Beckmann and David A. Wood
	Computer Sciences Department
	University of Wisconsin—Madison
	{beckmann, david}@cs.wisc.edu
	Abstract
	1 Introduction
	2 Managing CMP Cache Latency
	2.1 Baseline CMP Design
	2.2 Strided Prefetching
	Table 1. 2010 System Parameters

	2.3 Block Migration
	Figure 1. CMP-SNUCA Layout with CMP- DNUCA Bankcluster Regions

	2.4 On-chip Transmission Lines
	Figure 2. CMP-TLC Layout
	Figure 3. CMP-Hybrid Layout
	Figure 4. CMP-SNUCA vs. CMP-TLC vs. CMP- Hybrid Uncontended L2 Hit Latency

	3 Methodology
	Table 2. Evaluation Methodology

	4 Strided Prefetching
	Table 3. Prefetching Characteristics
	Figure 5. Normalized Execution: Strided Prefetching

	5 Block Migration
	5.1 Characterizing CMP Working Sets
	Figure 6. Cumulative Percentage of Unique L2 Blocks vs. # of Processors to Access the Block Durin...
	Figure 7. Cumulative Percentage of Total L2 Cache Hits vs. # of Processors to Access a Block Duri...
	Figure 8. Request Type Distribution vs. # of Processors to Access a Block During its L2 Cache Lif...

	5.2 Implementing CMP Block Migration
	5.3 Evaluating CMP Block Migration
	Figure 9. L2 Hit Distribution of CMP-DNUCA
	Figure 12. Avg. L2 Hit Latency: No Prefetching

	6 Targeting On-chip Latency In Isolation
	Figure 13. Normalized Execution: Latency Reduction Techniques with Prefetching

	7 Merging Latency Management Techniques
	7.1 Combining with On-chip Prefetching
	7.2 Combining All Techniques
	Figure 14. Normalized Execution: Combining All Techniques
	Figure 15. Avg. L2 Hit Latency: Combining Latency Reduction Techniques

	8 Energy Efficiency
	Figure 16. Normalized Network Energy-Delay: oltp and ocean

	9 Conclusions
	Acknowledgements
	References

